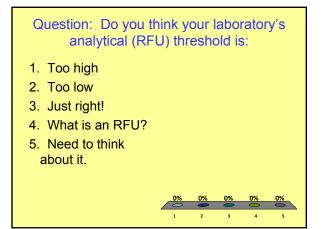
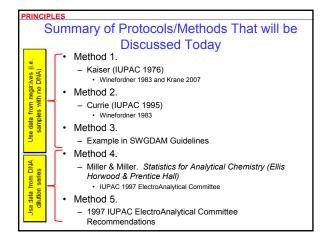
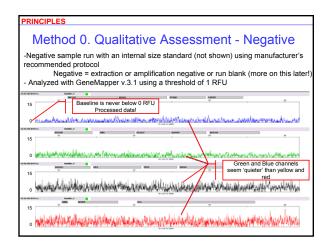
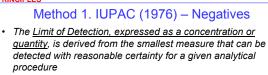

Module 3: Setting Analytical Thresholds

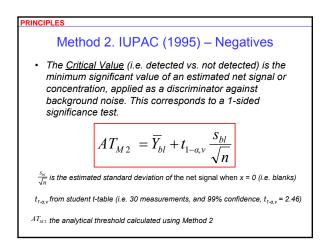


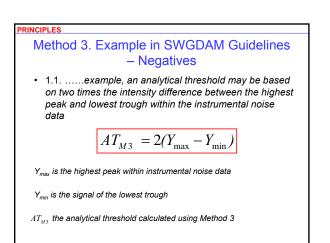


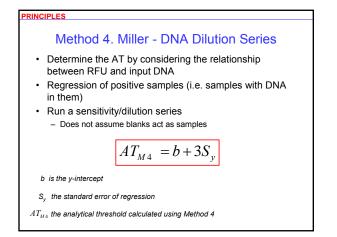


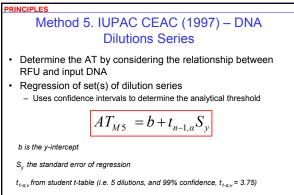


http;//www.cstl.nist.gov/biotech/strbase/training.htm

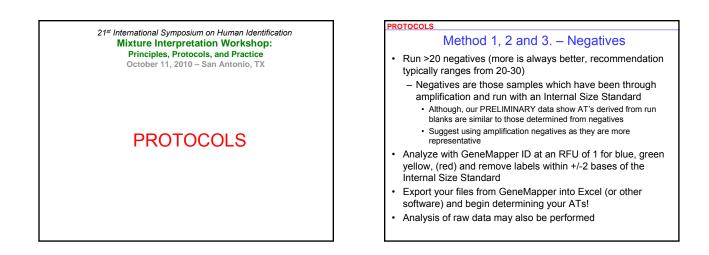


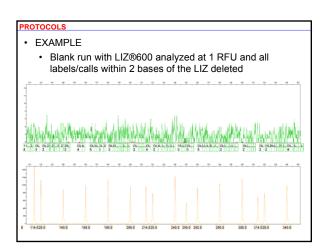

 We must determine at what signal we can no longer RELIABLY separate signal from noise.
 We do this by determining an Analytical Threshold (AT)


$$AT_{M1} = \overline{Y}_{bl} + ks_{bl}$$

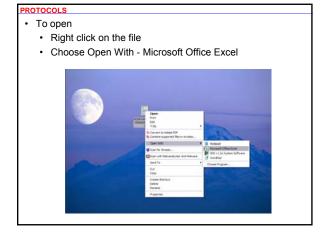

 $\begin{array}{l} \overline{Y}_{bi} \hspace{0.1 in} \text{is the average blank RFU signal} \\ s_{bi} \hspace{0.1 in} \text{the std deviation of the blank signal} \\ AT_{M} \hspace{0.1 in} \text{the analytical signal calculated using} \\ \text{Method 1} \end{array}$

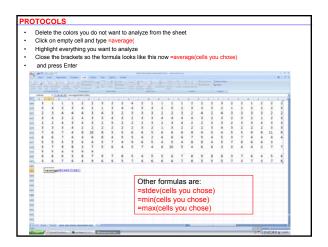
• Kaiser argued a value of *k* = 3 will result in an AT whereby we are at least 89% confident (if the noise is not normally distributed) and at most 99.86% confident (when noise is normally distributed) noise will be below this value.

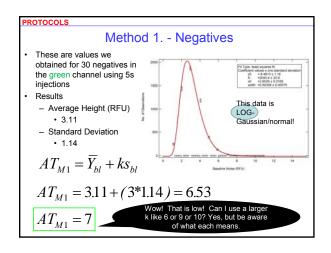


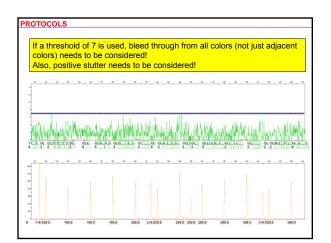


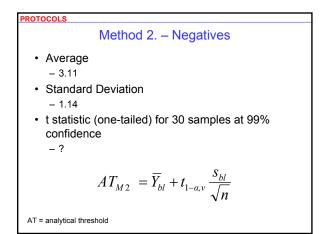
 ${\it AT}_{\rm M5}$ the analytical threshold calculated using Method 5

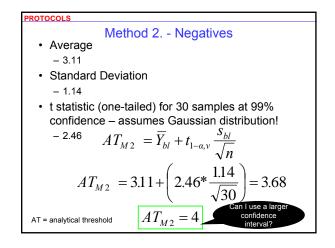


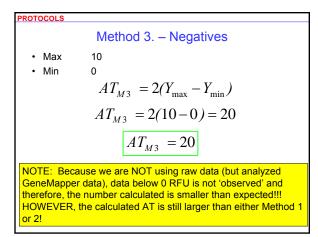

ROTO	COL	.5																							
. г		~ ~	~ n	~+·		- +c	.h :	~ .		~ ~		~ ~		-	а,			~~	-	~~	~	th	~	+~	hle
• E	ISU	e G	en	οιγ	pe	s le	มา	50	ווכ	SC	ie	eı	19		uy	70	u١	Cd	п	se	е	uı	е	ld	DIE
• Fi		► Ex	nn	nt T	Tah																				
		· L^	μυ	n c	au	ic.	••																		
~		- .								_															
• S	ave	Tab	le	an	d o	ner	າ ລະ	5 2	an	E	(CF	21	ile	<u>،</u>											
				····				-																	
Constituted in	12.7 10010-00	authors many	No.	i peri h	Logert In-																				
a nature i			-							-															
open Property	inter an					_		8 . A	1.00	-		_		_	_	_	_	_	_	_	-	_	_	_	_
instants.		the second	And Street	(maps)	Seal Prop		-				(Janet)	-	See.	inger 1	and .	(mage) i	See 1	(married	1-1-1	-				(mage)	10011
and harpening them		ADD-LOG-	1.1.1		COLUMN DO		14 IV		- 14		141,38	-	14.4		240.01	<u>.</u>		14	100.0				100		10.00
Front Sales		ALC: NO.	6-65		G1-6-	- 66	G - G		-6		- 1404	G	G7-	c	-66	œ.,	-	G	6	S-1		<u> </u>	<u></u>	e.,	10.00
100 00000		ineline:	9-50	0.00	Sec. Sec.		100-100	1.14	- 64	100	1000		10.4	G	10.44	÷~	-	<u>6</u>	666	<u>-</u>				-	
fee had -		110.00	1. 744	44	140 90			4.76	10		10.44	-	1447	-	144	100									
44d		418-041	1. 144		144.5 (6)			17.74	14		16.12	14	16.0	47	144.65	181	16.0	85	144	1.4					
taylet.			1.00		14.8 14	2014	14 D		-25		20.4	-	1941	44	and a	<u>e</u>	-								
1.0		and some	0.00	-	ALC: 10		- 10		-6		-	<u>e</u>	-	÷		<u>c</u>	-	<u> </u>	10.0			-	-		lair.
			1-64		14.15 101			-6	- 54		100.00	<u> </u>	- Tel -		50.0		1	<u>-</u>	-		-	<u>G</u>	100	÷.	100
		4181-144	1 100		141 341			1.14	14			-		**		10	-	#1	144	140	-	-	(mil)	14	and in case
		1241-1010	1.23		20.27	244		- C	1.0			-	-	-		<u>e</u> -									
		4184-2122	6-C3		and an	201	-		- 12	1.144	200.25	-	141.6	-	196.35	<u>~</u>	18.1		10.1	-	961	<u> </u>	100.31	<u>~</u>	8114
		and a state of the	6-624		141 14	14.5	10-14	- 10	- 14		141.00		141	-	100	-	100	-	100.00	-				-	
		CONTRACTOR OF THE OWNER	* 214	1 100	27.00 100	12.2	an 20	2 10	14		21.48	100	20.00	-	10.00	941	100.0	-	249.65	74	-	14	101.00	20.	10.00
		eser-peors	8 10.8	4.4	20.00	1.0.0		a 140	1.00		14122	1.26	14.0		142.01	1.00	10.0	-143	140.75	19.9	12.08	-08	10.7	116	
		100-00-00-00-0	1 102		10120 102	18.9					100.42	-	20. A	-	-	100	2010	-	200.42	100	18.14	1411	212.04	100	21%
		and the second	6-50	100	ALC: 100	100	10		-6		10.0	£	100	- C.	- 66	- 62	50		66	1.00					
			1 744	1.00	114.68 (40)	14.8		10. 10.1	1.00		-31.47	10.0	10.10		1.06.6	100									
		4184/147	1 10.4	6 (62)	194.02	10.0		4 101	19.		186.75	100	10.00	1043	101.00	124	-18.4	14.85	28.14	10.0					
		410-2-027	222		2434 141	104	10 IV	3 10	-16		26.45	19	28-0	100	141.0	2		_							
		110-120-0	C (22		And in case		- in		- 6		140	<u>.</u>				<u>c</u> -		<u> </u>	100.00	-	-	-	-	-	80-0
		and bearing	1 100	1.00	PORT INC.	19.3	80 1-1				100.00	<u>.</u>	14.8	10	18.2	80	10.0	100	10114	240	CB-1	10	120.30	100	10.00
		4884-1414	1.744		10.0 10	16.6		9 40	- 14		171.34	104	194	-		100	16-15	41	18.8	1075	14.45	14	14.47	148	30.04
		COR- YOR	1 287		1247 988	124	in 20		28		26.75	82	Delle.	78		14									
		1287-12400	1.00		Date Par	27.8	10 10	15 168	- 24	104	8.2	-	26.24	11	14/1	1	26.34	74	29(1	79	ĸх	100	246.22	79	39.2
		ALL DOLLARS	<u>- C.</u>		AND ADD	14.1	-			a 1141	100.00	1.00	100	1141	10.0	-	-	-	100.00	-					
	10 1011	ALCONT OF LA	# 208		2112 100	12-3		3 140	- 58	e 216	20140	1.00	27.6	-14		+10	24.8	14.87	248.65	102	21 10	128	20140	1.08	20 m
		100.00115	6.00	C 44	206.06		10		18		142.21	10	44	29	10.4	14	14.8	34	10.4		12.16	91	444	24	
		1001-00-01	2 747	100	194.2 Mil	18.71	45 18		- 24		10.44	-	10.4	-		6	10.0	-	10.0	-	18.15	-	20.4	141	214
		1000-00-000	5 (C)	100	28.1 25		34 34		-22		10.0	<u></u>	100.0	-		<u>6</u> -	10.1	-	100.00	-					
		128-127-28	6 (m)	1.00	1412 128				-6		10.47	<u> </u>	10.0	198		<u>-</u>	-	-	-	-					

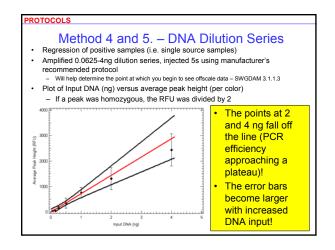

Module 3: Setting Analytical Thresholds


PROTOCOLS


- · Calculate the
 - · Average RFU of everything called/labeled
 - · Standard Deviation of RFU
 - Minimum signal
 - · Maximum signal
- · The next 3 slides will show you one way to do this







		_									1										
										rees of			_	_	_	_	_	_	_	PV	
onfidence	Z	100	50	40	30	25	20	15	12	10	9	8	7	6	5	4	3	2	1	2-taled	1-tailed
0%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	.500
	0.13	0.13	0.13		0.13		0.13	0.13	0.13		0.13	0.13	0.13	0.13	0.13		0.14			.90	.450
20%	0.25	0.25	0.25	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26		0.27	0.20	0.29	0.32	.80 70	.400
40%	0.52	0.39	0.53	0.59	0.39	0.53	0.39	0.39	0.39	0.40	0.40	0.40	0.40	0.40	0.41	0.41	0.42	0.62	0.73	.70	.350
40%	0.52	0.53	0.53	0.53	0.53	0.53	0.53	0.54	0.54	0.54	0.54	0.55	0.55	0.55	0.58	0.57	0.58	0.62	1.00	.50	.300
50%	0.84	0.85	0.85	0.85	0.85	0.86	0.86	0.83	0.70	0.98	0.88	0.89	0.90	0.91	0.92	0.94	0.76	1.06	1.38	40	.290
70%	1.04	1.04	1.05	1.05	1.05	1.06	1.06	1.07	1.08	1.09	1.10	1.11	1.12	1.13	1.16	1.19	1.25	1.39	1.30	.40	.150
80%	1.28	1.29	1.30	1.30	1.00	1.32	1.33	1.34	1.36	1.37	1.38	1.40	1.41	1.15	1.48	1.19	1.64	1.89	3.08	20	.100
85%	1.44	1.45	1.30	1.30	1.31	1.49	1.50	1.54	1.50	1.56	1.57	1.40	1.62	1.65	1.40	1.53	1.94	2.28	4.17	.15	.075
90%	1.64	1.66	1.68	1.68	1.70	1.71	1.72	1.75	1.78	1.81	1.83	1.66	1.09	1.94	2.02	2.13	2.35	2.92	6.31	.10	.050
91%	1.70	1.71	1.73	1.74	1.75	1.76	1.78	1.81	1.84	1.88	1.90	1.93	1.97	2.02	2.10	2.23	2.47	3.10	7.03	.10	.045
92%	1.75	1.77	1.79	1.80	1.81	1.82	1.84	1.88	1.91	1.95	1.97	2.00	2.05	2.10	2.19	2.33	2.61	3.30	7.92	08	.040
92%	1.01	1.00	1.05	1.00	1.00	1.09	1.91	1.95	1.99	2.03	2.06	2.09	2.14	2.20	2.30	2.46	2.76	3.50	9.06	.07	.035
94%	1.08	1.90	1.92	1.94	1.95	1.97	1.99	2.03	2.08	2.12	2.15	219	2.24	2.31	2.42	2.60	2.95	3.90	10.58	.06	.030
95%	1.96	1.98	2.01	2.02	2.04	2.06	2.09	2.13	2.18	2.23	2.26	2.31	2.36	2.45	2.57	2.78	318	4.30	12.71	.05	.025
96%	2.05	2.08	2.11	2.12	2.15	2.17	2.20	2.25	2.30	2.36	2.40	2.45	2.52	2.61	2.78	3.00	3.48	4.85	15.89	.04	.020
97%	2.17	2.20	2.23	2.25	2.20	2.30	234	2.40	2.46	2.53	2.57	2.63	2.71	2.83	3.00	3.30	3.90	5.64	21.21	.03	.015
98%	2.33	2.36	2.40	2.42	2.46	2.49	2.53	2.60	2.68	2.76	2.82	2.90	3.00	3.14	3.36	3.75	4.54	6.96	31.82	.02	.010
99%	2.58	2.63	2.68	2.70	2.75	2.79	2.85	2.95	3.05	3.17	3.25	3.38	3.50	3.71	4.03	4.60	5.84	9.92	63.68	.01	.005
99.9%	3.29	3.39	3.50	3.55	3.65	3.73	3.85	4.07	4.32	4.59	4.78	5.04	5.41	5.96	6.87	8.61	12.92	31.60	636.6	.001	.0005
	ducer	dia to	a near	ن تدا اده	of calls	For th	with of	>>100.1	108 Z.	_		_			_	_		_			

Method 4. – DNA Dilution Series

- Because of the plateau of PCR efficiency and increasing error bars

 We need to ensure the regression is within a linear range (i.e. 0.0625 1 ng)
 - A weighted regression will be necessary to determine the yintercept and other linear parameters

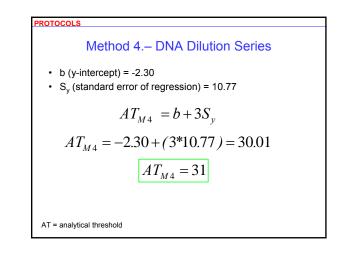
• HOW?

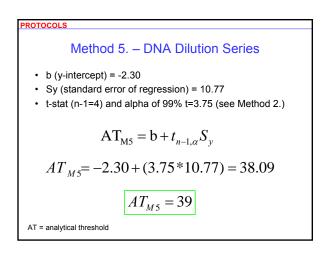
- Excel based templates or macros tools are freely available for your use/practice on the web
 - Template

ROTOCOLS

- www.bumc.bu.edu/biomedforensic/faculty-and-staff/faculty/catherinegrgicak/tools
- Macros 'Excellaneous" website at
 www.bowdoin.edu/~rdelevie/excellaneous by Robert de Levie

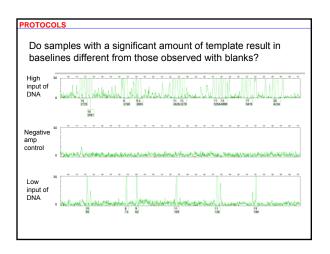
(www.bowdoin.edu/~rdelevie/)

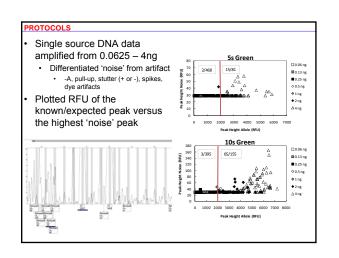

ROTOCOLS

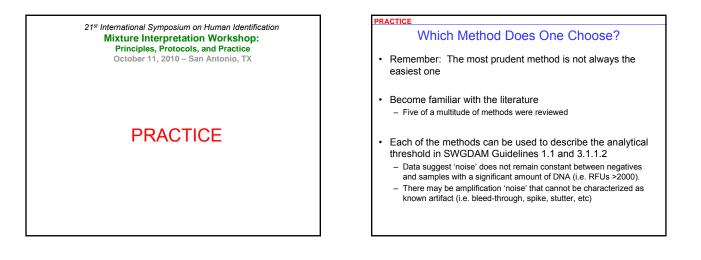

Method 4 and 5. - DNA Dilution Series

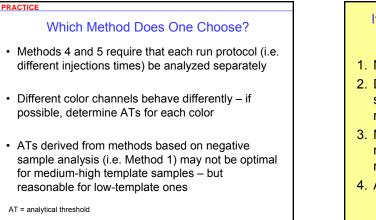
- Amplify a dilution/sensitivity series of single source DNA from ~0.0625 to 1 ng (you will have to confirm this range is linear for you)
 RFUs of homozygotes are divided by 2
- Run it using your platform and run protocol
 NOTE: Different injection times will result in different ATs!
- Export the genotypes table with allele heights and open it in Excel (see previous slides)
- Calculate the average and standard deviations (per color) of the RFUs obtained for samples run at that target

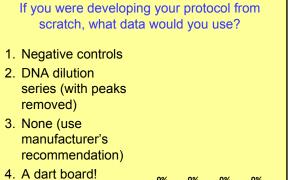
Module 3: Setting Analytical Thresholds


Me	ethod 4	and	5)iluti	on S	Serie	s
									-
	the templat						websit	e addr	ess
above) and plug	the val	ues int	o the g	rey ar	eas			
Weighted regression		5							
x	ν.	s.	1/s2	w	w,x,	w.y.	w.x.y.	WX ²	W.V. ²
0.0625	48.99375	22.1127	0.002045	2.708906	0.169307	132.7195	8.294967	0.010582	6502.425
0.125	77.80625	27.84388	0.00129	1.708512	0.213564	132.9329	16.61661	0.026695	10343.01
0.25	177.00625	50.50294	0.000392	0.519331	0.129833	91.9248	22.9812	0.032458	16271.26
0.5	352.21875	194.4713	2.64E-05	0.035024	0.017512	12.33613	6.168067	0.008756	4345.018
1	768.2625	216.6237	2.13E-05	0.028227	0.028227	21.68579	21.68579	0.028227	16660.38
		sums	0.003775	5	0.558442	391.5991	75.74664	0.106718	54122.1
		means			0.111688	78.31982			
Output									
slope(m)	721.7997156								
y intercept (b)	-2.296895975								
tandard error(S_)	10.76503242								
nput your values int	o the grey cells								
is the amount of D	NA (ng) input into P	CR							
is the average RFU									
is the standard dev	riation of RFU								
	the number of value								






, ,	sults	
Method	Origin	Analytical Threshold for green 5s injection example
1	Negatives	7
2	Negatives	4
3	Negatives	20
4	DNA Series	31
5	DNA Series	39


PROTOCOLS

